
'D-R192 653 INTERTED INFORKTION SUPPORT SYSTEM
(IISS) OLUME 6 1/1

USER INTERFRCE SUBS.. (U) GENERAL ELECTRIC CO
CLSMSCHEINECTADY NY PRODUCTION RESOURCES CONSU..LWNRSSFIED CMORNC TAL. Gi NOV 65 UM-621±44502 F/G 12/5 N

6U .

MICROCOPyf R(SC) UTK*I fI CHARY

NAl*. M&R At. SW AR A

% *%%% t~ %~ t. ~ k .K: %

AD-A 182 653
AFVAL-TR-86-4006
Volume VIII rmrrS
Part 26 M, iii '"

INITEGRATED I EFORMAT ION
SUPPORT SYSTEM (ISS)
Volume VIII - User Interface Subsystem
Part 26 - Rapid Application Generator User Manual IL

General Electric Company
Production Resources Consulting
One River Road
Schenectady, New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited. 4'

DTIC
ELECTE. %.

MATERI ALS LABORATORY j U 1 6 1987AIR FORCE VRIGHT AERONAUTICAL LABORATORIES U
AIR FORCE SYSTEMS COMMANDVRIWHT-PATTRSOi AFD, OH 45433-6533 E

* ._ *
,., ",., ..

4 ' ;

F~r~f~r*WV WrWNW rwuwrpp..u 6" .. wmwm& -P-TWrWrmW ww-

Unclassifiled
SSCUR'?V CLASSIVICATION Of TN'S PAGE

REPORT DOCUMENTATION PAGE

16 REPORT SECURITY CI.ASStFiCAAON 10. RESTRICTI MARKINGS

3& SECURITY CLASSifICATiON AUTHORITY 3 DISREBUIONAVAILASIL(TY Of REPORT

25. ECLSSIICA1@N/O~tGRADNG CHEULEApproved for public release;
2b. 6C6SS~fCA~~ftD~wNRA~ftG CHIUL9distribution Is unlimited.

41. PIERPORMING ORGANIZATION RELPORT NUMBS RtS) S. MONITORING ORGANIZATION REIPORT NUMSERISI

AFVAL-TR--86-4006 Vol Vill, Part 26

LNAME OP PERFORMINO ORGANIZATION IL OFFICE SYM9OL 7s. NAME OP MONITORING ORGANIZATION

General Xlectric Company IbenajAFWAL/ MLTC
Production Resources Consulting _______________________________

Bc. ADDRESS ICs ty. S11141 Amid ZIP Cedii 7b. ADDRESS Icity, S&SN esW ZIP Co"e,

I River Road
Schenectady. NY 12345 VPAFB, OH 45433-8533

g. NAME OP fWNDiG/SPONSORiNGQ B.. OFFPICE SYMBOL B. PROCUREMENT INSTRUMENT IOENTIPiC-ATION NuMBE P

Air Force Systems Command. USAF ArWAL/WLTC F33615-5O-C-5255

St ADDRESS (City. Stus mid ZIP Cedef I SOURCE Of PUNO0ING No$.

PROGRAMt PROJECT TASK WORK UPWIT

Wright-Patterson AFB, Ohio 45433 ELE ME NT NO. NO0. No. NO .

I I. TITLE tde* Secaritt Clamuaestioaj701 70 20

(See Reverse)I

12. PERSONAL AUTHORSI Morenc. Carol and Stafford. Frances

13& TYPE OF REPORT 1312. TIME COVERED Ts. DAEF REPORT (Y'. Ma... 10") 15I. PAGE COUNT

Final1 Technical Report 22 Sept 1980 - 31 Jluly 19857 1985 November 78

16. S60PPLEMI14TARV NOTATION The computer software contained herein are theoretical and/or
references that in no weay reflect Air Force-owned or -developed

ICAM Project Priority 6201 computer software.

17 COSATI CODIS IS. SUBJECT TERMS fCoofbnia Do 95561Wt o'V nem a"g udiult by bdock asam bers

FIELD GROUP SUOW oR

1508
0905

19. ABSTRACT f~Mae on poeraew o. eeT&d adWiUJ'y by bIech ftnamMri

~This manual describes the Application Definition Language and the
process used .for translating textual definitions of interactive
database applications into programs that access selected database
information resident in the Common Data Model (CDM). These data
are accessible through the IISS Neutral Data Manipulation

* Language. To generate an application, you must first use the
Application Definition language to define the application. You
then go through several runtime steps to generate the executable
application program from the application definition. This manual
describes the syntax of the language and how to run the
application generator and produce the executable. * .-

20 DISTRIOLPTiONAVAILAILITY OP ABSMC 14STRACT SECURAITY C&.ASSIFICATJON

UNCL6ASSIPIEDIUNIMITED SAME AS RPT. C: OTic USERS 0Unclassified

322 NAME OF RESPONSIBLE INDIVIDUAL 2DTELlP"ONE NUMBER 22t OFFICE SYMBOL
1Imedade Am@. Cede,

David L. JIudson 513-255-6W76 AFVAL/KLTC

Do FORM 1473.63 APR EDI1TION OF IJAN TIs OBSOLETE. Unclassified
SECURITY CLASSIPICATION OF T04IS PACE

11. Title

Integrated Information Support System (IISS)
Vol VIII - User Interface Subsystem
Part 26 - Rapid Application Generator User Manual

A S D 86 0040
9 Jan 1986

i- on For

i GRA&I

TAB
U: unnounced 0
j- ,it if icatio

Distributiion/

AvailabilitY Codes

jAvail and/or

Pist
SpecialA-H-ndo

~!
p~ C~4

UM 620144502

1 November 1985

PREFACE

This user's manual covers the work performed under Air
Force Contract F33615-80-C-5155 (ICAM Project 6201). This
contract is sponsored by the Materials Laboratory, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Gerald C.
Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer.
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search.

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models.

iii

UN 620144502
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and medium-size business.

North American Rockwell Reviewer.

Northrop Corporation Responsible for factory view
function and information
models.

Pritsker and Associates Responsible for IDEF2 support.

SofTech Responsible for IDEFO support.

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BMAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDM
(DACOM) Subsystem design integration

and test plan, as well as part
of the design of the CDM
(shared with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

A Av

UM 620144502
I November 1985

Subcontractors Role

Digital Equipment Consulting and support of the

Corporation (DEC) performance testing and on DEC
software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(McAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack Y Dodge) the MRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

Contractors ICAM Project Contributlng Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISMC).

v

UM 620144502
1 November 1985

Contractors ICAM Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDMP).

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology.

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements.
Company (HAC)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI).

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

vi

- • '. , % 5 - ''Z be... 'S.--------------- - . 4-- • * , ,. .* .. ,.'.. ' . . .

UM 620144502

1 November 1985

TABLE OF CONTENTS

* Pag~e

SECTION 1.0 INTRODUCTION................................... 1-1

SECTION 2.0 DOCUMENTS...................................... 2-1
2.1 Reference Documents.......................... 2-1
2.2 Terms and Abbreviations...................... 2-3

SECTION 3.0 APPLICATION DEFINITION LANGUAGE................ 3-1
3.1 ADL Format Notation.......................... 3-2
3.2 Application Definition Language Syntax........3-3
3.2.1 Application Definition Syntax............... 3-9
3.2.2 Form Definition Syntax..................... 3-10
3.2.3 Field Definition Syntax - Items............ 3-14
3.2.4 Field Definition Syntax - Forms............ 3-23
3.2.5 Field Definition Syntax - Windows...........3-26
3.2.6 Location Syntax............................ 3-29
3.2.7 Repeat Spec Syntax......................... 3-42
3.2.8 Condition Definition Syntax................. 3-45
3.2.9 Condition Action Syntax..................... 3-50

SECTION 4.0 HOW TO CREATE AN APPLICATION DEFINITION........4-1
4.1 Statement Format.............................. 4-1
4.2 Restrictions.................................. 4-1
4.3 Abbreviations................................. 4-1
4.4 Including Comments........................... 4-2
4.5 Reserved Words................................ 4-2

APPENDICES

APPENDIX A STEPS FOR EXECUTING THE RAPID APPLICATION
GENERATOR....................................... A-1

FIGURES

FIGURE 3-1 Field Reference Points....................... 3-30
3-2 Absolute Location............................ 3-31
3-3 Relative Location............................ 3-33
3-4 Relative Location (Above/Below)............... 3-34
3-5 Relative Location (Right/Left)................ 3-36
3-6 Location Relative to Two Fields............... 3-37
3-7 Absolute Row/Relative Column.................. 3-39

vii

UM 620144502
1 November 1985

3-8 Absolute Column/Relative Row.................. 3-40
3-9 Row of Fields................................. 3-44
3-10 Array of Fields............................... 3-44

viii

UM 620144502
1 November 1985

SECTION 1

INTRODUCTION

The Rapid Application Generator (RAP) is a tool for
translating any textual definition of an interactive database
application into the C and COBOL programs that are required to
access selected data base information resident in the Common
Data Model (CDM). These data are accessible through the
Integrated Information Support System (IISS) Neutral Data
Manipulation Language (NDML). To generate an application, you
must first use the Application Definition Language (ADL) to
define the application. You then go through several steps
defined in Appendix A to generate the executable application
program from the application definition.

Manual Objectives

The main objective of this manual is to describe the syntax
of the ADL. Topics covered include:

" How to define anz application.

" The syntax of the language

" How to run the application generator and produce the
executable.

Intended Audience

The RAP is intended for use by application programmers in
the IISS environment. Knowledge of User Interface forms, the
CDM, and the Neutral Data Manipulation Language (NDML) is
assumed.

Related Documents

The Form Editor User Manual describes how to define the
User Interface forms. Information you should be familiar with
includes:

* item, form and window fields

* repeating fields

1-1

------- V.

lV

UM 620144502
1 November 1985

The Form Processor User Manual explains several concepts
you need to help you in defining and using forms for application
software. These include:

" form hierarchies

" qualified names

The Neutral Data Manipulation Language User Manual
describes the syntax of the NDML. This language provides the
capability of communicating with the IISS testbed databases.
You need to be familiar with the SELECT, DELETE, INSERT, and
MODIFY commands of the NDML.

1-2

UM 620144502
1 November 1985

SECTION 2

DOCUMENTS

2.1 Reference Documents

(1) Structural Dynamics Research Corporation, IISS Rapid
Application Generator Development Specification, DS
620144502 , 1 November 1985.

[2] Systran, ICAM Documentation Standards, 15 September
1983. IDSi50120000C.

[4] Systran. User's Manual for the ICAM Integrated Support
System (IISS) Neutral Data Manipulation Language
(NDML), February. 1983.

[5] Systran, Implementation of Enhancements of NDML SELECT
COMMAND, 25 July 1984. revised 9 September 1984.

[6] Systran. Discussion of Function Implementation NDML
SELECT COMMAND, 25 vuly 1984, revised 4 September
1984.

This manual is one of a set of user manuals that together
describe how to operate in the IISS environment. The complete
set consists of the following manuals listed here for reference:

[1 Structural Dynamics Research Corporation, IISS Form
Editor User Manual. UM 6201444400B, I November 1985.

Explains how to define and maintain electronic forms.
It is intended to be used by programmers writing
application programF that use the Form Processor.

[23 Structural Dynamics Research Corporation. IISS Form
Processor User Manual, UM 620144200B, I November 1985.

Describes the set of callable execution time routines
available to an application program to process
electronic forms. It is intended to be used by
programmers writing application programs for the IISS
environment.

2-1

UM 620144502
1 November 1985

[3] Structural Dynamics Research Corporation. IISS
Terminal Operator Guide, OM 620144000 , 1 November
1985.

Explains how to operate the generic IISS terminal when
running an IISS application program. The ZISS end
user environment, function selection and some
predefined applications are also described.

[4] Structural Dynamics Research Corporation. IISS Text
Editor User Manual. UK 620144600B. 1 November 1985.

Explains how to use the file editing functions
including: inserting, deleting, moving and replacing
text.

(5] Structural Dynamics Research Corporation, IISS Rpi
Application Generator User Manual, UM 620144502. 1
November 1985.

Describes the Application Definition Language and the
process used for translating textual definitions of
interactive database applications into programs that
access selected data base information resident in the
Common Data Model. This information is accessible
through the IISS Neutral Data Manipulation Language.

(6] Structural Dynamics Research Corporation, IISS Report
Writer User Manual, UM 620144501. 1 November 1985.

Describes thp~ Report Definition Language and the
process of creating a hard copy report of selected
data base information resident in the Common Data
Model. This information is accessible through the
IISS Neutral Data Manipulation Language. This manual
also describes the Hierarchical Report Writer which
functions as a post processor to the initial report.

(71 Structural Dynamics Research Corporation. IISS Virtual
Terminal User Manual, UK 620144300B. 1 Novembr 1985.

Explains the program callable interface to the IISS
Virtual Terminal. The callable routines, Virtual
Terminal commands and the implementation of additional
terminals are described. It is intended for
application and system programmers working in the IISS
environment.

2-2

UM 620144502
1 November 198'

2.2 Terms and Abbreviations

Application Definition Lnguage an extension of the Forms
Definition Language that includes retrieval of database
Information and conditional actions. It is used to define
interactive application programs.

Application Generator- (AG). subset of the IISS User
Interface that consists of software modules that generate IISS
application code and associated form definitions based on a
language input. The part of the AG that generates report
programs is called the Report Writer The part of the AG that
generates interactive applications is called the Rapid
Application Generator.

Application Interface: (AI). subset of the IISS User
Interface that consists of the callable routines that are linked
with applications that use the Form Processor or Virtual

Terminal. The AI enables applications to be hosted on computers
other than the host of the User Interface.

Application Process: (AP), a cohesive unit of software that
can be initiated as a unit to perform some function or
functions.

Attribute: field characteristic such as blinking.
highlighted, black. etc. and various other combinations.
Background attributes are defined for forms or windows only.
Foreground attributes are defined for items Attributes may be
permanent. i.e., they remain the same unless changed by the
application program. or they may be temporary, i e . they remain
in effect until the window is redisplayed

Common Data Model (CDM). IISS subsystem that describes
common data application process formats form definitions. etc
of the IISS and includes conceptual schema external schemac.
internal schemas. and schema transformation operators

Communication Services, allows on host interprocess
communication and inter-host communication between the various
rest Bed subsystems

Communication Subsystem: (OMM). IISS subsystem that
provides communication services to the Test Bed and subsystems

2-3

UM 620144502
1 November 1985

Computer Program Configuration Item: (CPCI), an aggregation
of computer programs or any of their discrete portions, which
satisfies an end-use function.

Conceptual Schema: (CS). the standard definition used for
all data in the CDM. It is based on IDEF1 information
modelling.

Cursor Position: the position of the cursor after any
command is issued.

Device Drivers: (DD). software modules written to handle
I/0 for a specific kind of terminal. The modules map terminal
specific commands and data to a neutral format. Device Drivers
are part of the UI Virtual Terminal.

Display List: is similar to the open list, except that it
contains only those forms that have been added to the screen and
are currently displayed on the screen.

External Schema: (ES). an application's view of the CDM's

conceptual schema.

Field: two dimensional space on a terminal screen.

Field Pointer: indicates the ITEM which contains the
current cursor position.

Form: structured view which may be imposed on windows or
other forms. A form is composed of fields. These fields may be
defined as forms, items, and windows.

Form Definition: (FD). forms definition language after
compilation. It is read at runtime by the Form Processor.

Forms Definition Language: (FDL), the language in which
electronic forms are defined.

Forms Driven Form Editor: (FDFE), subset of the FE which
consists of a forms driven application used to create Form
Definition files interactively.

Form Editor: (FE). subset of the IISS User Interface that
is used to create definitions of forms. The FE consists of the
Forms Driven Form Editor and the Forms Language Compiler.

2-4

UM 620144502
1 November 1985

Form Hierarchy: a graphic representation of the way in
which forms, items and windows are related to their parent form.

Forms Language Compiler: (FLAN), subset of the FE that
consists of a batch process that accepts a series of forms
definition language statements and produces form definition
files as output.

Form Processor: (FP), subset of the IISS User Interface
that consists of a set of callable execution time routines
available to an application program for form processing.

Form Processor Text Editor: (FPTE), subset of the Form
Processor that consists of software modules that provide text
editing capabilities to all users of applications that use the
Form Processor.

IISS Function Screen: the first screen that is displayed
after logon. It allows the user to specify the function he
wants to access and the device type and device name on which he
is working.

Integrated Information Support System: (IISS), a test
computing environment used to investigate, demonstrate and test
the concepts of information management and information
integration in the context of Aerospace Manufacturing. The IISS
addresses the problems of integration of data resident on
heterogeneous data bases supported by heterogeneous computers
interconnected via a Local Area Network.

Item: non-decomposable area of a form in which hard-coded
descriptive text may be placed and the only defined areas where
user data may be input/output.

Logical Device: a conceptual device which to an application
is indistinguishable from a physical device and is then mapped
to part or all of a physical device.

Message: descriptive text which may be returned in the
standard message line on the terminal screen. They are used to
warn of errors or provide other user information.

Message Line: a line on the terminal screen that is used to
display messages.

2-5

UM 620144502
1 November 1985

Network Transaction Manager: (NTM), IISS subsystem that
performs the coordination, communication and housekeeping
functions required to integrate the Application Processes and
System Services resident on the various hosts into a cohesive
system.

Neutral Data Manipulation Language: (NDML), the command
language by which the 0DM is accessed for the purpose of
extracting, deleting, adding, or modifying data.

Open List: a list of all the forms that have been and are
currently open for an application process.

Operating System: (OS), software supplied with a computer
which allows it to supervise its own operations and manage
access to hardware facilities such as memory and peripherals.

Page: instance of forms in windows that are created
whenever a form is added to a window.

Paging and Scrollin : a method which allows a form to
contain more data than can be displayed with provisions for
viewing any portion of the data buffer.

Physical Device: a hardware terminal.

Presentation Schema: (PS), may be equivalent to a form. It
is the view presented to the user of the application.

Qualified Name: the name of a form, item or window preceded
by the hierarchy path so that it is uniquely identified.

Rapid Application Generator: (RAP), part of the Application
Generator that generates source code for interactive programs
based on a language input.

Subform: a form~ that is used within another form.

Text Editor: (TE), subset of the 1155 User Interface that
consists of a file editor that is based on the text editing
functions built into the Form Processor.

User Data. data which Is either input by the user or
output by the application programs to items.

2-6

UM 620144502
1 November 1985

User Interface: (UI), IISS subsystem that controls the
user's terminal and interfaces with the rest of the system. The
UI consists of two major subsystems: the User Interface
Development System (UIDS) and the User Interface Management
System (UIMS).

User Interface Development System: (UIDS), collection of
IISS User Interface subsystems that are used by applicat-ions
programmers as they develop IISS applications. The UIDS
includes the Form Editor and the Application Generator.

User Interface Management System: (UIMS), the runtime UI.
It consists of the Form Processor, Virtual Terminal, Application
Interface, the User Interface Services and the Text Editor.

User Interface Monitor: (UIM), part of the Form Processor
that handles messaging between the NTM and the UI. It also
provides authorization checks and initiates applications.

User Interface Services: (UIS), subset of the IISS User
Interface that consists of a package of routines that aid users
in controlling their environment. It includes message
management, change password, and application definition
services.

User Interface/Virtual Terminal Interface: (UI/VTI),
another name for the User Interface.

Virtual Terminal: (VT), subset of the IISS User Interface
that performs the interfacing between different terminals and
the UI. This is done by defining a specific set of terminal
features and protocols which must be supported by the UI
software which constitutes the virtual terminal definition.
Specific terminals are then mapped against the virtual terminal
software by specific software modules written for each type of
real terminal supported.

Virtual Terminal Interface: (VTI), the callable interface
to the VT.

Window: dynamic area of a terminal screen on which
predefined forms may be placed at run time.

Window Manager: a facility which allows the following to be
manipulated: size and location of windows, the device on which
an application is running, the position of a form within a
window. It is part of the Form Processor.

2-7

UM 620144502
1 November 1985

SECTION 3

APPLICATION DEFINITION LANGUAGE

The Application Definition Language (ADL) provides a very
precise and flexible method for defining applications. It is an
extension of the Form Definition Language that allows you to:

* Define the interactive environment that the application
user will use to access the database (i.e., CDM data).

* Retrieve, delete, insert and modify the data in the
database.

* Perform simple statistical calculations on the
information such as counts, sums, and averages.

NOTE: Statistics are not available in Release 2.0.

3-1

Ji~~' W''NI-' 5'r~
r2~A.% ~. ~.,AN.

UM 620144502
1 November 1985

3.1 ADL Format Notation

This manual uses the following notation to describe the
syntax of the ADL.

UPPER-CASE identifies reserved words that have specific
meanings in the ADL. These words are
generally required unless the portion of the
statement containing them is itself optional.

lower-case identifies names, numbers, or character
strings that the user must supply.

Initial identifies a statement or parameter that is
upper-case defined later on.

_Underscores identify reserved words or portions of
reserved words that are optional.

()Braces enclosing vertically stacked options indicate
that one of the enclosed options is required.

I]Brackets indicate that the enclosed statement or
parameter is optional. When two or more
options are vertically stacked within the
brackets, one or none of them may be
specified.

..Ellipsis indicates that the preceding statement or
parameter may be repeated any number of times.

3-2

UM 620144502
1 November 1985

3.2 Application Definition Language Syntax

The complete ADL Syntax is listed in this section to show
the structure of the language. The next section describes the
characteristics and restrictions of the language statements.

Application Definition

CREATE APPLICATION applicationname

[Form Definition I ...

[Condition Definition I

3-3

UM 620144502
1 November 1985

Form Definition

CREATE FORM form-name

[CONDITIONAL J

[SIZE cols [BY rows J J

[BACKGROUND { WHITE))
{ BLACK)

[KEYPAD (KEY n - function-name ..)]

C PROMPT Location promptstring] ...

[FieldDefinition I

Field Definition - Items

ITEM itemname [RepeatSpec J

[Location]

[SIZE cols [BY rows] J

[VALUE {expression }]
{INDEX(field name))
{'. DATE' I
{'._TIME')

NODUP I

DISPLAY AS { INPUT }
{ OUTPUT I
{ HIDDEN)
{TEXT I

[DOMAIN ([LEFT I [UPPER] [PICTURE picture_spec])]
[RIGHT] [LOWER]

[MUST ENTER] [MUST FILL] [NUMERIC]
[MAXIMUM int] [MINIMUM int

C PROMPT Location promptstring ...]

[HELP { string }]
{form name I
{APPLICATION)

3-4

UM 620144502
1 November 1985

Field Definition - Forms

FORM formname C Repeat Spec]

Location

SIZE cols C BY rows]

[PROMPT Location promptstring J

Field Definition - Windows

WINDOW window-name [Repeat Spec

Location

SIZE int [BY int]

BACKGROUND { BLACK }
{ WHITE)

[PROMPT Location promptstring] ...

Repeat Spec

I ({ { HORIZONTAL [WITH int SPACES] [.) I
I tint) (VERTICAL } I

3-5

UM 620144502
1 November 1985

Location

{ [in.] { LEFT) OF [field-name J } +-
{RIGHT) AND

{ COLUMN int) +-

([int] { BELOW I [field-name]) -+
{ ((ABOVE)
(ROW in I -+

{ [int] { ABOVE I [field-name]) +-
{ {BELOW} I AND
{ ROW int +-

[Rpt] AT
{i [nt] { RIGHT } OF [field name] I -+
{ {(LEFT i
{ COLUMN int -+

{ ([mt] (LEFT } OF [Rpt OF] [field_name]
{ { (RIGHT)

{ [mt] { ABOVE } [Rpt OF] [fieldname])
{I (BELOW)

I int-I int-2 [RELATIVE TO [Rpt OF] [field_name] }

/ \
Rpt

TOP LEFT
I TOP
I TOP RIGHT
I LEFT
CENTER

I RIGHT
I BOTTOM LEFT
I BOTTOM
I BOTTOM RIGHT

/

3-

* . - . - '-

UM 620144502
1 November 1985

Condition Definition

/\

I (OVERFLOW BY field name) Condition Action ...
I (CHANGE Item name)-Condition Action ...
I (item field T-) value) ConditionAction ...

ON c 0-)
((PICK functionname) Condition Action ...
[(PICK function-name & CURSOR IN field)

I ConditionAction ...
I (STARTUP) ConditionAction ...

\ /

Condition Action

/

PRESENT form name [IN window]
I SET item-_name - {string }

(integer)
I HELP { string }

(form name I
Delete action

I Insert action
I Modify-action
I Select action
I EXIT

\/

Delete Action

DELETE FROM table WHERE Predicate

Insert Action

INSERT INTO table (colspec [.,.]) VALUES value-list

Modify Action

MODIFY table (USING table] SET column assignmentlist
WHERE Predicate

3-7

UM 620144502
1 November 1985

Select Action

SELECT qualified name = colspec ...
DISTINCT I

[FROM table [abbreviation]
WHERE Predicate)

[ORDER BY Col-spec { ASCENDING .
{ DESCENDING)

['{' select-action

Predicate

I predicate AND predicate
Operand Operator Operand

t/

Operand

/\

I Col spec I
string
number
field name I

\ /

Operator

/ \
I =

,= ,

I I

I I

\ /

Colspec

/\

I column
table column
abbreviation column i

\ /

3-8

41I

UM 620144502
1 November 1985

3.2.1 Application Definition Syntax

This section describes the characteristics and restrictions
of the language statements.

The collection of ADL statements that define an application
is an application definition. An application definition is
created by writing AOL statements directly to an ADL source file
with any text editor you might use to prepare a program source
file. The ADL source file is processed by the Rapid Application
Generator to produce an interactive application executable. The
Form and Condition definitions may be written in any order.

The syntax for an application definition is:.

CREATE APPLICATION application-name

[FormDefinition I ...

[ConditionDefinition].

CREATE APPLICATION

Every application definition must begin with the
CREATE APPLICATION statement. This tells the
compiler that what follows is an application
definition.

CREATE APPLICATION is the statement keyword.

application-name is a unique name of up to 10
letters and/or numbers
associated with each
application. An
application name is required.
It cannot begin with a number
and cannot be the same as any
form name in the application
definition. It is incorporated
by the Rapid Application
Generator into the Application
name which is used to invoke
the executable at run time.
The exact form of the
Application name created is
system dependent and therefore
the length of application-name

35-9

UM 620144502
1 November 1985

may be further restricted by

the system you are running on.

Form-Definition

The FormDefinition portion(s) of an application
definition define screens which application users
will use to Interact with the database. The
forms may also describe the placement and
formatting of retrieved data on the screen.
Three types of Information can be displayed:
fixed textual Information, database data and
input received from the user at the terminal

4' condition Definition

The Condition_-Definition portion(s) of an
application definition specify predefined actions
that will occur as the result of user interaction
with the software via the terminal. The
interactions Include: cursor positioning.
function key selection, change of value In an
item field or the occurrence of certain values in

* an item field. These user initiated events
determine the course of execution of the
software. The possible predefined actions that
can be triggered by a user Initiated event
include: deletion of data In a table, insertion
of data into a table, modification of data in a
table, and selection of data.

NOTE: selection is available in release 2.0.
Deletion, insertion and modification are not
available in release 2.0.

* ~ 3.2.2 Form Definition Synta

Form definitions are used to define the physical layout of
the terminal screen. They display selected data and allow. for
user Interaction with the application.

3-10

UM 620144502
1 November 1985

The syntax for a form definition is:

CREATE FORM form-name

CCONDITIONALJ

CSIZE cols I DY rows]]

[BACKGROUND WHVITE I
BLACK)

CKEYPAD (KEY n - function-name ...)

[PROMPT Location prompt string

CFieldDefinition3 .

CREATE FORM

Every form definition must begin with the CREATE
FORM statement. This tells the compiler that what
follows is & form definition. The end of a form
definition is signalled by one of the following:

" another CREATE FORM statement
" an ON condition statement (ConditionDefinition)

CREATE FORM is the statement keyword.

form-name is a unique name of up to 10
letters, and/or numbers
associated with each form. You
will use this name in
specifying the qualified names
f or SELECT actions and
condition definitions. A
form -name is required and
cannot begin with a number.
The length of the form name may
be further restricted by the
system on which you are
running.

CONDITIONAL

The CONDITIONAL clause allows you to specify that

3-11

UM 620144502
1 November 1985

the form only appears on the screen as a result of

a PRESENT action of some ON condition.

CONDITIONAL is the clause keyword.

SIZE This clause determines the number of columns and
rows the form will occupy when it is displayed.
This clause is optional and if specified, when the
form is displayed in a form or window field, the
size of the form or window takes precedence. This
means that the form will be "clipped" if the form
size is larger than the size of the form or window
it it displayed in. When the form size is smaller
than the field size, the form will "grow" to fill
the form or window field.

SIZE is the clause keyword.

cols is the width of the form. It
is expressed as the number of
columns it will occupy when
displayed.

BY is a reserved word that must be
included when rows is
specified. There must be a
space before and after this
word when used.

rows is the height of the field. It
* is expressed as the number of

rows it will occupy when
* displayed. This parameter is

optional and defaults to one if
not entered.

* BACKGROUND

This clause allows you to define the background of
the form. This is analogous to specifying what
color of paper a paper form is printed on. This
clause is optional. If it is omitted, the
background of the form defaults to black.

BACKGROUND is the clause keyword

3-12

UM 620144502
1 November 1985

WHITE displays black characters on an
opaque white background
(sometimes known as reverse
video).

BLACK displays white characters on an
opaque black background.

KEYPAD

This clause allows you to give a name to one of the
terminal programmable function keys. This clause
is optional.

KEYPAD is the clause keyword.

KEY n is the programmable function
key. n can be any integer in
the set (0,4 through 20)

function-name is the name you choose to
describe the function you are
assigning to the key. The name
can be a maximum of 10
alphabetic characters. You
will use this name in ON PICK
statements to specify the key
that determines the action.

3-1

UK 620144502
1 November 1985

PROMPT

This clause allows you to specify fixed textual
information such as titles and descriptions that
will appear on the form. It is optional and may be
repeated as many times a~s needed to specify the
textual information.

PROMPT is the clause keyword.

Location describes where the text will
be positioned on the form. The
syntax is described in section
3.2.6 of this manual.

prompt string is the textual information to
be displayed on the form and
must be enclosed in double
quotes ("text").

FieldDefinition

Field definitions specify the fields a form
contains. Forms can contain item, form and window
fields. The information required to define a field
is different for each field type.

3.2.3 Field Definition Syntax - Items

An item field is one that holds data. The application user
can enter data into some item fields and the value entered may
be used to determine the execution path of the application

* software. Item fields are also used to display database
information by specifying the appropriate item fields when
retrieving the information from the database. The syntax for an
item field definition is:

* 3-14

UM 620144502
1 November 1985

ITEM itemname [RepeatSpec]

[Location I

SIZE cols E BY rows] 3

VALUE (stringconstant)]
fINDEX(field name))
U. DATE' }
{'.TIME'

NODUP]

DISPLAY AS { INPUT }
{ OUTPUT)
{ HIDDEN)
(TEXT)

[DOMAIN ([LEFT I [UPPER] [PICTURE picture_spec])]

[RIGHT] [LOWER]

[MUST ENTER I [MUST FILL I [NUMERIC]

MAXIMUM int 3 [MINIMUM int

PROMPT Location promptstring ...]

[HELP (string) 3

(form name)
(APPLICATION)

ITEM

This statement specifies that the form contains a

data field.

ITEM is the statement keyword.

item-name is a unique name of up to 10
letters, numbers, and/or
underscores. It is used to
specify where information
selected from the database is
to be stored. It is also used
in ON Condition statements to

specify the field whose value

3-15

FVW1W 7rRU

UM 620144502
1 November 1985

triggers the Condition action.
It is required and cannot begin
with a number.

RepeatSpec specifies that the item appears
on the form more than once. An
item may repeat indefinitely,
either horizontally or
vertically, with m spaces
between repetitions to form
rows or columns. A repeat
specification may be followed
by another repeat to form two
dimensional arrays of fields.
The syntax for this parameter
is described in section 3.2.7
of this manual.

Location

Location specifies where the first occurrence of
the item field will be positioned on the containing
form. When the item field is being used merely as
a place holder and is not to be displayed, Location
is not needed. The syntax for Location is
described in section 3.2.6 of this manual.

SIZE

The SIZE clause determines the area on the form
that each occurrence of the item occupies. This is
specified by the width and height. An item may not
overlap other fields or text and must be within the
boundaries of its containing form. If the VALUE
clause is included in the field definition, SIZE is
optional for item fields. In this case, the width
of the item defaults to the length of the string
constant for the VALUE clause and the height is
one. SIZE is also optional when the item field is
being used as a place holder for a value not to be
displayed.

3-16

a a n n n~~~~W~nrP www Iwwn v~ n n a aa-~a, .. -

UM 620144502
1 Niovember 1985

SIZE is the clause keyword.

cols is the width of the field. It
is expressed as the number of
columns it occupies on the
form.

BY is a reserved word that must be
included when rows is
specified.

rows is the height of the field. It
is expressed as the number of
rows it occupies on the form.
It is optional and defaults to
one if not entered.

VALUE

The VALUE clause allows you to specify a default
value for the item field. This value is displayed
on the screen. The VALUE clause is optional. If
omitted the item is blank filled. If used to
specify a default value and the SIZE clause is
omitted from the field definition, the item is
assumed to be one dimensional and its length is the
number of characters in the string constant. When
storing the date and time, the size of the item
must be at least 9.

VALUE is the clause keyword.

string constant is a character string enclosed
in double quotes ("default
value"). If the SIZE clause is
included in the field
definition, the length of the
string constant must be no more
than the total number of
characters specified by the
size. For example, if size is
4 by 3, then the string
constant should be no more than
12 characters long. When
entering default values for
multi-dimensional fields,
concatenate the values and they

3-17

UM 620144502
1 November 1985

will be split apart
appropriately to fill the
field. For example, if the
size is 4 by 3 and the string
constant is "***.++++====", it
will be displayed as

INDEX(fieldname) specifies that the value for
this field is the name of the
first displayed element of the
array "field name". The array
must be on the same form as
this item field and be enclosed
in single quotes (i.e.,
INDEX('myfield')). If
"myfield" is a two dimensional
array, an example index would
be "myfield(l,l)".

-DATE' stores the current date in the
item field. The format of the
date is MM/DD/YY. The SIZE of
the field must be at least 9.

._TIME' stores the current time in the
item field. The format of the
time is HH:MM:SS. The SIZE of
the field must be at least 9.

NODUP This clause optionally suppresses the output of
unchanged item field values. For example, if the
value of one item in an array is the same on
several records, the records will be printed but
only the first instance of the value will appear on
the report.

DISPLAY AS

The DISPLAY AS clause controls access to the field
and determines how the item value appears on the
screen. This clause is required for every item
field.

3-18

UM 620144502
1 November 1985

DISPLAY AS is.the clause keyword.

INPUT means that the user may enter a
value for this item and the
value is echoed on the screen.
The area where the user may
type is highlighted on the
form.

OUTPUT means the value is data
retrieved from the database and
may not be entered by the user.
It is displayed in bold type on
screens that can display bold.

TEXT is the same as OUTPUT but the
value is not displayed in bold
type.

HIDDEN means that the user may enter a
value for this item but the
value is not echoed on the
screen. This option is
typically used for items of
privileged information such as
passwords. The area where the
user may type is highlighted on
the form.

DOMAIN

The DOMAIN clause allows you to reformat the value
a user enters and specifies entry requirements and
restrictions for the item field. This clause is
optional. When included, the options may be
entered in any order.

DOMAIN is the clause keyword.

LEFT is used to qualify input and
output fields. It positions
the value so that it begins in
the leftmost position of the
field. Any leading blanks are

removed.

3-19

UM 620144502
1 November 1985

RIGHT is used to qualify input and
output fields. It positions
the value so that it ends in
the rightmost position of the
field. The value is padded
with leading blanks.

If neither LEFT nor RIGHT is specified, the value
is stored in its original form.

UPPER is used to qualify input and
output fields. It converts all
lower-case characters of a data
value to upper-case.

LOWER is used to qualify input and
output fields. It converts all
upper-case characters of a data
value to lower-case.

If neither UPPER nor LOWER is specified, the data
value remains in its original form.

MUST ENTER is used to qualify input
fields. It specifies that the
user is required to enter a
value for the item before the
form can be processed by the
application program.

MUST FILL is used to qualify input
fields. It specifies that the
user is required to enter a
value for the item and it must
fill every position of the
item. This option is typically
used for items such as phone
numbers or social security
numbers.

NUMERIC is used to qualify input
fields. It specifies that only
numbers will be accepted for
the field value. If this
option is not specified, all
alphanumeric characters are
accepted.

3-20

UM 620144502
1 November 1985

MAXIMUM int is used to qualify input
fields. It specifies that only
numeric values will be accepted
for the field and that the
highest value is the number
Wint*. The abbreviation "MAX"
may be used for this option.

MINIMUM mnt is used to qualify input
fields. It specifies that only
numeric values will be accepted
for the field and that the
lowest value is the number
"int". The abbreviation "MIN"
may be used for this option.

If either MAX or MIN is
specified, the field becomes
NUMERIC. Both the MAX and MIN
options may be specified to
define a range of acceptable
field values.

PICTURE is used to qualify output
fields. It allows you to
define a COBOL format as the
output format for the item data
value. This includes numeric
and alphanumeric specification,
leading zero suppression,
decimal placement. leading sign
indicators, currency symbols,
and placement of embedded
commas.

picture spec is a COBOL picture
specification (enclosed in
double quotes) defining the
specific output format
desired.

3-21

UM 620144502
1 November 1985

PROMPT

The PROMPT clause allows you to specify textual
information associated with the item field such as
labels and instructions.

PROMPT is the clause keyword.

Location specifies where the information
appears on the form. The
syntax for Location is
described in section 3.2.6.

promptstring is the textual information to
be displayed on the form and
must be enclosed in double
quotes ("text").

HELP

The HELP clause allows you to specify help text
that will be displayed during run time in response
to a user request.

HELP is the clause keyword.

string is the text that you want to be
displayed enclosed in double

quotes.

form name is the name of the form that
you want to be used to display
the help text.

APPLICATION is a reserved word that
signifies how the processing of

the HELP key will be handled
by the application.

3-22

UM 620144502
1 November 1985

3.2.4 Field Definition Syntax - Forms

Form fields are used to incorporate a subform within a
form. Form fields provide a convenient way to repeat groups of
information on the screen. The syntax for a form field
definition is:

FORM form-name [RepeatSpec]

Location

SIZE cols E BY rows]

PROMPT Location promptstring 3

FORM

This statement specifies that you are incorporating
a form within the current form being defined. The
form specified by this statement must be defined
with its own form definition. The form definition
must be in the current ADL source file.

FORM is the statement keyword.

formname is a unique name of up to 10
letters and/or numbers. This
form name is the one used on
the CREATE FORM statement to
define this form. A form name
is required and cannot begin
with a number.

RepeatSpec specifies that the form appearE
on its containing form more
than once. A form may repeat
indefinitely either
horizontally or vertically.
with m spaces between

repetitions to create rows or
columns. That repeat
specification may then be
repeated to create two
dimensional arrays of subforms
The syntax for this is
described in section 3.2.7 of
this manual.

3-23

UN 620144502
1 November 1985

Location

Location specifies the position of the first
occurrence of the form. Repeating occurrences are
then positioned relative to this occurrence based
on the repeat specification The Location syntax
is described in section 3.2.6 of this manual

SIZE

The SIZE clause determines the area on its
containing form that each occurrence of the subform
may occupy. The top left character of the
containing form becomes the origin of the first
occurrence of the subform.

SIZE is the clause keyword.

cols is the width of the field. It
is expressed as the number of
columns it occupies on the
form.

BY is a reserved word that must be
included when rows is
specified.

rows is the height of the field. It
is expressed as the number of
rows it occupies on the form.
Rows is optional and defaults
to one if not entered.

For form fields. the SIZE clause specifies the
maximum space that this subform will occupy on its
containing form When a form contains a repeating
field and the number of repetitions is unknown, you
can define the size of the form to be open ended in
the appropriate direction(s). This is done by
using an asterisk (') as the value for cols and/or
rows. This means that some other factor such as
the overflow of a fixed size form at a higher level
will control the size of the openended form.

3-24

UM 620144502
1 November 1985

PROMPT

The PROMPT clause allows you to display fixed
textual information associated with the form field
such as labels and instructions.

PROMPT is the clause keyword.

Location specifies where to position the
information on the form
containing this form. The
syntax for Location is
described in section 3.2.6.

prompt_string is the textual information to
be displayed on the form. It
must be enclosed in double
quotes ("text").

3-25

. .. .V r d ,

UM 620144502
1 November 1985

3.2.5 Field Definition Syntax - Windows

Window fields are used as place holders on a form for
subforms to be supplied by the Rapid Application Generator at
run time. The syntax for a window field definition is:

WINDOW windowname [RepeatSpec]

Location

SIZE cols (BY rows 3

[PROMPT Location prompt string ...]

WINDOW

This statement specifies that you are defining a
field on the form as a window. Its contents will be
determined by the Rapid Application Generator at run
time.

WINDOW is the statement keyword.

window name is a unique name of up to 10
letters, numbers and/or
underscores. This name cannot
begin with a number or an
underscore and is used by the
Apliction Generator at run time
to determine where to put
subforms.

Repeat Spec specifies that the window appears
on the form more than once. A
window may repeat, either
horizontally or vertically, n
times with m spaces between
repetitions to form rows or
columns. That repeat
specification may then be
repeated to form two dimensional
arrays of fields.

Location

Location specifies the position of the first

3-26

3.

2.;- ,|
.,,. - . , ' -. .- , .- - ." " , - - , " . ." ." , , ,

UM 620144502
1 November 1985

occurrence of the window on the form. Repeating
occurrences are then positioned relative to this
occurrence based on the repeat specification. The
Location syntax is described in section 3.2.6 of this
manual.

SIZE

The SIZE clause determines the area on the form that
each occurrence of the window may occupy. The top
left character of the window field becomes the origin
of any subforms it contains.

SIZE is the clause keyword.

cols is the width of the field. It is
expressed as the number of
columns it occupies on the form.

BY is a reserved word that must be
included if rows is specified.

rows is the height of the field. It
is expressed as the number of
rows it occupies on the form.
Rows is optional and defaults to
one if not specified.

For window fields, the SIZE clause reserves the space
on the host form for subforms to be supplied at run

* time. If a subform is bigger than the reserved
* window, it will be "clipped".

PROMPT

The PROMPT clause allows you to specify information
associated with the field such as labels and
instructions.

PROMPT is the clause keyword.

Location specifies where to position the
information on the form
containing the field. The syntax
for Location is described in
section 3.2.6 of this manual.

3-27

UM 620144502
1 November 1985

promptstring is the information to be
displayed. It must be enclosed
in double quotes
("promptstring").

3-28

UM 620144502
1 November 1985

3.2.6 Location Syntax

Location specifies where fixed textual information and
fields will be positioned on a form. Location may be absolute
with respect to the origin of the form or relative to fields on
the form. The origin of a form is at the top left corner with
rows being positive down and columns positive to the right.
Relative locations are especially useful for positioning text
that is associated with fields. The syntax for location is:

S[int] { LEFT) OF [field-name I) +-

({ RIGHT)) I AND
{(COLUMN int +-

S[int] { BELOW } [field-name]) -+
{ (ABOVE } I
(ROW Int I -+

{ int] {ABOVE) [field-name]) +-
(BELOW) I AND

i(ROW int +-
[Rpt] AT

{([int] { RIGHT } OF [field-name] I -+

*" { (LEFT) - '

(COLUMN int) -+

S((int (LEFT) OF [Rpt OF] [field-name])'
({ (RIGHT } }

([int] (ABOVE) [Rpt OF] [field name])
(BELOW))

int-I int-2 [RELATIVE TO [Rpt OF] [field-name] }

When defining relative lo,-ations, field reference points
are used. Figure 3-1 shows the nine possible reference points
that a field can have.

3-29

,A .*'*1*9'~J dd~V , ~ ~ t' .~ ~ '

UM 620144502
1 November 1985

Top Left Top Top Right

Left * Right
Center

Bottom Left Bottom Bottom Right

Figure 3-1 Field Reference Points

Each of the reference points represents a character. This
means that if you have a one character field, all nine points
are the same.

The syntax for the Rpt is:

/\
I TOP LEFT
TOP
TOP RIGHT
LEFT
CENTER
RIGHT
BOTTOM LEFT
BOTTOM
BOTTOM RIGHT

\ /

When positioning text and fields, they must be contained
within the boundaries of the containing form and cannot overlap
other fields or text. Column one of a form must always be blank
and there must be one blank space between an item field and any
text. For example:

3-30

UN 620144502
1 November 1985

text:

is legal and

text:

is illegal.

The following sections describe and show how to use the
location syntax to position fields. The syntax is basically the
same for positioning text. 4 represents the form origin and *
represents the default field reference point.

Absolute Location

An absolute location positions the first character
of a text stripg or a reference point of a field at
the intersection of row (n) and column (m) with
respect to the form origin. Both coordinates must
be given. When positioning a field, the default
reference point is the top left if the reference
point is not given.

11 In
I
V

m I
SI field-one

II I

Figure 3-2 Absolute Location

The reference point of field -one ()is positioned
at the intersection of row n and column m. To
position field -one as shown, you would use the
location syntax:

3-31

UM 620144502
1 November 1985

(Rpt 3AT COLUMN nt AND ROW int

or

[Rpt 3AT ROW int AND COLUMN int

or

[Rpt AT mnt-i int-2 [RELATIVE TO [Rpt OF
field-name JI

where int-i is the row and irit-2 is the column.
Some valid Locations are:

TOP LEFT AT COL m AND ROW n

TOP LEFT AT n mi

AT n m

3-32

UN 620144502
1 November 1985

Relative Location

The reference point of a field can be positioned at
a point that is relative to the reference point of
another field on the form. If a specific reference
point for either of the fields is not given, the
default is the top left.

IU(--I

I I field two

InIn
I

I I

I I
I field one

Figure 3-3 Relative Location

The reference point of field two is positioned at row
n and column m relative to the reference point of
fieldone. To position field-two as shown, you would
use the location syntax:

[Rpt I AT int-1 int-2

where int-1 is the row and int-2 Is the column. Some
valid Locations are:

TOP LEFT AT -n a RELATIVE TO TOP LEFT OF field-one

AT -n a RELATIVE TO field-one

3-33

UM 620144502
1 November 1985

Relative Location (Above/Below)

The reference point of a field can be positioned n
rows above or below the reference point of another
field on the form. If reference points are not
given for either of the fields, the default
reference points are as shown by the *'s.

field one

In

In
I

I * Iv

I I
fieldtwo I

II I

Figure 3-4 Relative Location (Above/Below)

The reference point of field two is positioned n
rows below the reference point of field one. To
position field two as shown, you would use the
location syntax:

[Rpt I AT [int] { ABOVE [Rpt OF I [field-name]

BELOW I

Some valid Location clauses are:

TOP AT n BELOW BOTTOM OF field-one

AT n BELOW field-one

Using the ABOVE keyword, you can position the
reference point of fieldone n rows above the
reference point of fieldtwo. Some valid Locations
are:

3-34

UM 620144502
1 November 1985

BOTTOM AT ni ABOVE TOP OF field-two

AT nABOVE field-two

3-35

UM 620144502
1 November 1985

Relative Location (Right/Left)

The reference point of a field can be positioned m
columns right or left of the reference point of
another field on the form. If reference points are
not given for either of the fields, the default
points are as shown by the *'s.

m

Field one , - -- Field two

Figure 3-5 Relative Location (Right/Left)

The reference point (Rpt) of field one is m columns
to the left of the field two reference point or the
field-two reference point is m columns to the right
of the field one reference point. To position the
fields as shown, you would use the location syntax:

[Rpt I AT [int] { LEFT) OF [Rpt OF) [field-name]
{ RIGHT)

Some valid Locations are:

RIGHT AT m LEFT OF LEFT OF field-two

AT m LEFT OF LEFT OF field-two

LEFT AT m RIGHT OF RIGHT OF field-one

AT m RIGHT OF RIGHT OF field-one

AT m RIGHT OF field-one

NOTE: The Rpt is optional so locations 1 and 2 shown
above are identical as are locations 3 and 4.

3-36

UM 620144502
1 November 1985

Location Relative to Two Fields

The reference point of a field can be positioned n
rows above or below the default reference point of
one field and m columns right or left of the
default reference point of another field. Any
reference point can be specified for the field
being positioned. The reference points for the
other fields default to the edge of the field
closest to the field being positioned as shown by
the *'s.

II

I I

I field-one I

I *I

I I

1 I

I field two
in

I field-three
I I

II

Figure 3-6 Location Relative to Two Flelds

The reference point of fieldthree is positioned n
rows below the bottom edge of field one and m
columns left of the left edge of field two To
position fieldthree as shown, you would use the
location syntax:

[Rpt] AT (int] (ABOVE } (fieldname]
{ BELOW

AND (int] (LEFT) OF (field-name]

3-37

.

UM 620144502
1 November 1985

RIGHT)

it does not matter whichi direction is specified
first. Some valid Locations are:

TOP RIGHT AT n BELOW field-one AND a LEFT OF
field-two

AT a LEFT field-two AND n BELOW field-one

AT n BELOW field-one AND a LEFT field-two

1 38

UM 620144502

1 November 1985

Combination Location

Field positions can be a combination of absolute
and relative locations. The reference point of a
field can be positioned at row n and a columns
right or left of the default reference point of
another field or at column a and n rows above or
below the default reference point of another field.
Any reference point can be specified for the field
being positioned. The reference point for the
other field defaults to the edge of the field
closest to the field or text being positioned as

I shown by the *s.

IIs field-one I
InI

I --------- I

I field-twoI

Figure 3-7 Absolute Row/Relative Column

The field -two reference point is in row n, m
columns left of the left edge of field -one. To
position field -two as shown, you would use the
location syntax:

(Rpt]AT ROW int AND (intl LEFT) OF [field-name]
RIGHT)

or

3-39

UM 620144502
1 November 1985

[Rpt] AT tint] (LEFT) OF [field-name] AND ROW int

(RIGHT)

Some valid Locations are:

TOP RIGHT AT ROW n AND m LEFT OF field one

AT m LEFT field-one AND ROW n

AT ROW n AND m LEFT field-one

I I
I field one I

niIII

v

mI

I field-two I
II I

I I

Figure 3-8 Absolute Column/Relative Row

The field_ two reference point is in column m, n
rows below the bottom edge of field one. To
position fieldtwo as shown, you would use the
location syntax:

[Rpt I AT [int) (ABOVE) [fieldname] AND COLUMN int
(BELOW)

or

RPT] AT COLUMI; int AND tint { ABOVE [field-name)
BELOW }

Some valid locations are:

3-40

UM 620144502
1 November 1985

TOP LEFT AT n BELOW field-one AND COL m

AT TOP LEFT n BELOW field-one AND COL mn

AT COL m AND ni BELOW field-one

3-41

UM 620144502
1 November 1985

3.2.7 Repeat Spec Syntax

The repeat specification specifies that the field appearL
on the form more than once. A field may repeat, either
horizontally or vertically, an indefinite number times with a
spaces between repetitions to form rows or columns. The repeat
specification may then be repeated to form two dimensional
Carrays of fields. It is syntactically correct for a fixed size
form to contain a repeating field. The overflow of the fixed
size form can then be used to control paging and other
formatting of the display. The syntax for the Repeat
Specification is:

+ ... +

1 H int-i) { HORIZONTAL } [WITH int SPACES] ..])
I { int-l/int-2 I { VERTICAL
I { int-1/int-I

1I {')

I I int-l/

int-1 is how many times to repeat the field on the
form (i.e., display size).

int-I/int-2 indicates that the field is scrollable using
the function keys in the "scrll/page" mode of
the keyboard. Int-l is how many times to
repeat the field on the form and int-2 is the
actual number of times the field occurs.

int-I/int-I indicates that the field is scrollable using
the function keys in the "scrll/page" mode of
the keyboard but the keys are passed back to
the application program. Int-I is how many
times to repeat the field on the form

specifies that the field repeats indefinitely

on the form.

int-/ * indicates a scrollable open-ended array which
is not yet supported.

HORIZONTAL states that the field repeats in a horizontal
direction The abbreviation H may be used for
this option.

VERTICAL states that the field repeats in a vertical

3-42

UM 620144502
1 November 1985

direction. The abbreviation V may be used for
this option.

WITH is an optional reserved word that may be
included for readability.

int-3 is how many spaces to leave between field
occurrences. It defaults to one if omitted.

SPACES is an optional reserved word that may be
included for readability.

3-43

UM 620144502
1 November 1985

Row of Fields

The Repeat Spec (* H 1) repeats a field
horizontally with one space between repetitions.
This would appear on the report as shown in
Figure 3-9.

+----- +------+----

I///I I///I I/1/I

I//I III..........I///[
+---+ +---++--

Figure 3-9 Row of Fields

Array of Fields

The Repeat Spec (* V 1,* H 1) repeats the row of
fields defined by '* H 1' vertically with one blank
row between repetitions. This would appear on the
report as shown in Figure 3-10.

+---+ +---++--

Il/I I/II I/I
IIIII II I Il I
+---+ +---+ --

+--.-+ +---+ --

IIIl II I .l/lit
l/I/l I/li................. I///I
+----+ +----+ ---

Figure 3-10 Array of Fields

3-44

i-.- .. ** *4 , # . a..- ..t. .-. o? ./% , o'%(-* . .** . ..-, ..-.* . ' .* . '..'...'..'.'. .', * . *..... " " -' ..

UM 620144502
1 November 1985

3.2.8 Condition Definition Syntax

The Condition_-Definition portion(s) of an application
definition specify predefined actions that will occur as the
result of user interaction with the software via the terminal.
The interactions include: cursor positioning, function key
selection, change of value in an item field or the occurrence of
certain values in an item field. These user initiated events
determine the course of execution of the software. The possible
predefined actions that can be triggered by a user initiated
event include: Insertion of values into item fields,
presentation of other forms, deletion of data in a table,
insertion of data into a table, modification of data in a table,
and selection of data from a table.

NOTE: Selection is available in release 2.0. Deletion,
insertion and modification are not available in release 2.0.

The syntax for the Condition Definition is:

I(OVERFLOW BY field name) ConditionAction ...
I (CHANGE item name) Condition Action..
I(item-field T-)value) ConditionAction . I

ON '{-

I ((PICK function name) Condition Action ...
I ((PICK function name & CURSOR IN field)
I Condition-Action..
I (STARTUP) Condition-Action ...

ON is the statement keyword.

OVERFLOW Condition

This ON condition allows you to specify one or more
actions to be performed when the size of a field is
exceeded. A repeating field can cause the overflow
of its containing field either by repetition in the
horizontal or vertical direction. You specify the
name of the field that causes the condition action

a1 ~ to be triggered. For example, a set of nested
forms with a one row repeating item field at the
lowest level could be output with interruptions at
the line level or at a higher level. This allows
the application to require that a subform be output

a. either in its entirety or not at all.

3-45

UM 620144502
1 November 1985

OVERFLOW specifies that one or more
actions will occur if the size
of a named field is exceeded.

BY is a reserved word that must be
included.

field-name is the qualified name of the
item or form that will trigger
the overflow if its next
occurrence causes the size of
its containing field to be
exceeded. It is a required
parameter. The name must be
qualified with enough of the
path name to make it unique.

Condition-action specifies the action(s) to be
performed when the overflow
occurs. The syntax for this is
defined in section 3.2.9 of
this manual.

CHANGE Condition

This ON condition allows you to define one or more
actions to be performed when the value of a named
item field changes. If the item field being tested
for a changing value contains database values, then
it may be appropriate for these values to have been
previously sorted so that all similar values are
grouped together. This sorting can be achieved by
using the "ORDER BY" option of the SELECT statement
(see section 3.2.9 in this manual). If the test
for a changing value is positive, the actions are
taken after the item field is instantiated with the
changed value.

CHANGE specifies that one or more
actions will be performed when
the value of a named item field
changes.

item-name is the name of the item field
whose change of value will
trigger one or more actions.

3-46

UM 620144502
1 November 1985

Condition-action specifies the action(s) to be
performed when the item value
changes. The syntax for this
is defined in section 3.2.9 of
this manual.

item-field {)value Condition

This ON condition allows you to define one or more
actions to be performed when the value of a named
item field is equal (not equal) to a value you
specify. If the test for the value is positive,
the actions are taken before the item field is
instantiated with the value.

item-field is the name of the item field
whose value will be tested.

value is the value of the item field
that will cause the specified
actions to be taken.

Condition-action specifies the action(s) to be
performed when the item value
is equal to the value you
specify. The syntax for this
is defined in the section 3.2.9
of this manual.

PICK Condition

This ON condition allows you to define one or more
actions to be performed when the user presses a
programmable function key which you defined in the
form definition KEYPAD clause. This condition can
be used in combination with the CURSOR IN
condition. If you use both conditions to trigger
the actions, enter an ampersand "&" between them.

PICK specifies that one or more
actions will be performed when
the user presses the specified
key.

3-47

UM 620144502
1 November 1985

function-name is the name you gave to the
programmable function key in
the form definition KEYPAD
clause.

CURSOR IN Condition

This ON condition allows you to qualify a PICK
condition by defining that the condition action(s)
be performed when the user positions the cursor in
a specified item or form field before pressing the
key specified in PICK. This condition can only be
used in combination with the PICK condition. if
you use both conditions, enter an & between them.

CURSOR IN specifies that one or more
actions will be performed when
the user positions the cursor
in the defined location.

field is the name of the field that
the user must position the
cursor in to trigger the
action(s).

Condition-action specifies the action(s) to be
performed when the cursor is
positioned in the field. The
syntax for this is defined in
section 3.2.9 of this manual.

STARTUP Condition

This ON condition allows you to define one or more
actions to be performed at the beginning of the
application. This condition is required and should
include as one of its actions the presentation of
an initial form.

STARTUP specifies that when the
application is started, one or
more actions are to be
performed.

V ** ~ ~V V ma a, ~ 3-48.

-1
UM 620144502

1 November 1985

Condition action specifies the action(s) to be
performed when the application
is started. The syntax for
this is defined in section
3.2.9 of this manual.

--
3i4

.'

53-49

UM 620144502
1 November 1985

3.2.9 Condition Action Syntax

These are actions to be taken when the specified ON
condition occurs. The condition action syntax is:

i PRESENT form name [IN window I
i SET item-name - (string I

(integer)
i HELP (string

form name
Del1e te action

IInsert action
Modify-action

I Select action
i EXIT

PRESENT Action

This action causes the output of a specified form
or array element.

PRESENT it the action keyword.

form name it the name of the form field
to be output when the specified
ON condition occurs. This is a
required parameter.

IN window. allows you to output the form in
a specific window. If the window
is unspecified, then 'screen' is
assumed.

SET Action

This action sets the value of an item field to a
specified value The value is either a constant or
the result of an expression which is evaluated
beforc assignment to the item.

3 50

UM 620144502
1 November 1985

SET is the action keyword.

item-name is the name of the item whose
value you want to set. It is
required and may be a qualified
name in order to uniquely
identify the item.

constant the value. Either an integer
or a string constant.

HELP This clause allows you to define a help message
that can be displayed as a condition action

HELP is the clause keyword.

string is the character string that
you want to be displayed in the
message line as the result of a
specified condition. The
string and form -name options
are mutually exclusive.

form-name is the name of the predefined
'p form that you want to be

displayed as the result of a
d specified condition. The

string and form -name options
are mutually exclusive.

The DELETE, INSERT. and MODIFY actions are not available in
release 2.0.

Select Action

This action causes data to be retrieved from~ the
distributed database. The ADL uses the NDHL SELECT
command to retrieve the information. The syntax for
the SELECT command is:

3-51

D , 0* q'

UN 62014450

1 November 1981

SELECT qualified name - coi spec
DISTINCT
FRO tabie [abbreviation

[WHERE Predicate I
ORDER BY Col spec I ASCEUDInG

{ DESCENDING;
s select action "

SELECT It the action keyvord

qu.i ! if i ed namt thi data, YvU otef " pi. t.!
Like f ; e h vnam

here The name mutt be

qualified with the path s-, "ha,
it is unique

You must qualify the name enough to identify a unique
item field in the form hierarchy The name must be
enclosed in single quotes (i e form item) ThiL
is an exception to normal KDKL syntax where single
quotes denote string constants In the AL string
constants are denoted with double quotet and
qualified names are denoted with single quote& li
is optional to end the name with a semi colon if
you do not enter a semi-colon the system enterE one
Whenever a repeating field is part of a qualified

name, it must include the subscript "1 (i e
form(1 item) This refers to the rurrent

occurrence of the field

Col spec specifleE the rrFur name ,A
tht- datA you Ac &ee(tinf tion

the databaEr tablt Only
c'fjluanL from the takle ar-
vIlI d no-, quoted iliterit. tfx*.
can be included and n.,
arithmetic can be performed on
the values selected before they
are displayed

3-52

-* ~ -*~**s..r ..- sV~**~ * ? .tJ

UK 620144502
I November 1985

DISTINCT

ThiE clause is optional and specifies that
duplicate recordE selected from the database will
not be displayed DISTINCT it the clause keyword

This clause specfieE the table that contain- the
data

FROM ir. the cl au--e keyword

L i C7 i the full name of the tabl4
that contains the data

abbreviation allowt you to define an
abbreviated name for the
database table You can use
this name to refer to the table
throughout the application

VERE

This clause alloWL you to specify criteria for
selection of the data from the database table

VHERE iL the clauLe keyword

Predicate sperifies the criterion for
selection of data Th- tyntA
f o Predi ate ii

3 I 3

d d .d.~~ P * 5,3

UK 620144502
1 November 19b5

Predicate

Ipredicate AND predicate I

Operand Operator Operand

Operand

st ring
number
field name i

Operator

Col spec

(C unn

abbreviation column

ORDER BY

This clause allows you to specify the order In
which the rows of data are displayed on the screen

ORDER BY is the~ clause keyword

3-54

UM 620144502
1 November 1985

Col spec specifies the table column to use
as the sort key. More than one
sort key can be specified. You
can specify a sort direction
(ASCENDING OR DESCENDING) FOR
EACH SORT KEY. ASC is the
default.

SELECTs must be defined in the order In which the data are to be
presented on the screen. Nerted SELECTs are grouped by use of
braces (()).

EXIT Action

This action terminates the application.

3

3-55

UM 620144502
1 November 1985

SECTION 4

HOW TO CREATE AN APPLICATION DEFINITION

You create an application definition by writing ADL

statements directly to a text file using any text editor.

4.1 Statement Format

ADL statements can be entered in free format. Free format
means that keywords and numbers can be separated by 1 or more
spaces. The ADL compiler treats tabs, comments, form feedE and
carriage returns as spaces.

Application definition statements may be in any order.

The DOMAIN attribute options may be entered in any order-

Form field names used in the application definition syntax
are pseudo qualified names in the form hierarchy. They are
denoted by strings of the following type: 'form-item; The
single quotes are required For release 2.0. wherever a field
is repeating, the qualified name must include the subscript "l'
(i.e.. 'fors.item(l)'). This always refers to the current
occurrence of the field.

4.2 Restrictions

*Every application definition must begin with the CREATE
APPLICATION statement

There must be at least one space before and after every
keyword in the syntax

A field name may only be omitted from the Location syntax
in a PROMPT statement-

4.3 Abbreviations

Underscores in the ADL syntax indicate reserved words or
portions of reserved words that are optional

4-1

0" * P 5*' *-*~*4*

UM 620144502
1 November 1985

4 4 Including Comments

You can include comments in a application definition by
enclosing the comment text in (/*) and (*/). Comments are
treated as spaces by the ADL compiler. For example,

CREATE APPLICATION applicationl /I used to review salaries

4 5 Reserved Words

This is an alphabetized list of the reserved words in the
Application Definition Language

ABOVE COUNT LEFT RELATIVE
AND CREATE LOWER REPORT
AP CURSOR MAX RIGMT
APPLICATION DESC MAXIMUM ROW
AS DESCENDING HIM SELECT
ASCEND DISPLAY MINIMUM SET
ASCENDING DISTINCT MUST SIGNAL
AT DOMAIN NODUP SIZE
AVERAGE ENTER NUN SPACE
BACKGROUND EXIT NUMERIC SPACES
BELOW FILL OF STARTUP
BOTTOM FORM ON SUN
BY FROM ORDER SUMMARY
CENTER HELP OVERFLOW TO
CHANGE H PAGE TOP
COL HORIZONTAL PIC UPPER
COLUMN IN PICK VALUE
CONI, ITEM PICTURE V
CONDITIONAL KEY PRESENT VERTICAL

KEYPAI, PROMPT WHERE
WI NDOW
WITH

4 2

\%. ' *. , " .j = .. . f '* (

UM 620144502
1 November 1985

APPENDIX A

STEPS FOR EXECUTING THE RAPID APPLICATION GENERATOR

Below is the procedure to use in invoking the Rapid
Applioation Generator for Release 2.0. This procedure assumes
that the 1M is up and running and the user is logged on to
IISS. Refer to the Terminal Operator Guide for the procedure
for logon to IISS. The following convention is used to document
this section.

* Text in angle brackets is to be replaced with appropriate
information by the user

0 Single upper case words enclosed In angle brackets
represent terminal keys (e.g. ENTER).

0 Text in upper case is to be entered as shown

I On the IISS Function Screen, fill in the following items:

FUNCTION SDAPPGKNER Press -ENTER,

2 On the Rapid Application Generator screen, fill in the
following items

Application Definition File Name Press ENTER.

This file may reside anywhere as long as the complete
filename is given It is the file containing the
application definition

After the Rapid Application GenerAtoz has completed the
following file exist in the NTM environment directory (all

-* prefixed with the application name a given on the CREATL
APPLICATION line of tht application language file Foi
example, if the application name is UPDATEDB

UPDATEDDC C (generated C code for form processing)
UPDATEDBX PRC (generated Cobol code for the NDML)
UPDATW 3 M (a header file to be used by UPDATEDSC C)
UPDATLDU V" (lists any errors where the External Schema

and Presentation (Form) Schema item mapping
ay cause truncation)

fd (form definition files)

A l

,*, .* s *- . .* * , .,', ...', 9 -, , . -, , , .. . , . ', , - -,

UM 620144502
1 November 1985

It is best to use 8 characters for application names.
These, together with the SD prefix make up the 10
characters required for the name used when executing the
generated application program.

4 Now press the ,QUIT, key twice to exit the Rapid
Application Generator and the IISS and return to the
operating system command level.

5 Run the NDML precompiler on the UPDATEDBX.PRC file. Follow
the NDML Programmer's Guide.

6 Output from the NDML precompile consists of the following
-b files (the exact file names can be found by looking at the

output messages from the NDML precompile):

generated application program (with NDML statements

converted to correct language (Cobol or Fortran))

one or more RP-Sub process files

one or more CS-ES subroutine files

an RP-main processor

7 All the above files must be compiled following the
procedure given in the NDML Programmer's Guide

8 Compile the generated UPDATEDBC C program

9 Link the generated RP main process and subprocess using
LNKORP as outlined in the NDML Programmer s Guide

Ic Link the generated application object, the CS-ES object(s)
and the generated C application program into one
executable For this example, the executable is named
UPDATEDB

11 Update the UI database Thib step showh how to do this
using ORACLE on the VAX

S DELETE SEL DAT.0
S 7FI
username username
password password

Enter the following line

A2

UM 620144502
1 November 1985

INSERT INTO ROLAPP VALUES ('(role in capital
letters '.'SDapplication name padded to 8 characters with

* Z's,'); EXIT

12 Update the 16TM tables. On the Vax this requires editing
the following .DAT files.

S EDIT/EDT ACTTBL.DAT

Insert new lines as follows:

application name padded to 8 characters with Z s 1
.RP-Hain process name padded to 8 characters with Z si1

S EDIT/EDT APITIL.DAT

Insert new lines as follows:

SDapplication name padded to 8 character with Z'sTlVl
GR.RP-Hain Bxxxx process name padded to 8 characters with

Z s-TIVl

S EDIT/EDT APTTDL.DAT

Insert new lines as follows:

application name padded to 8 characters with
Z s 0599010320000010

.RP-Kaln name padded to 8 characters with
Z s-9999010120001130

Perform steps 13 through 16 to update the UI database

13 Return to the IISS and on the 1155 Function Screen fill in
* the item as follows

FUNCTION. SDDEFINEAP

14 On the Define An Application form, fill in the item as
follows

APPLICATION: SDUPDATED3

This name must atch the executable name in step 10 and

must be & total of 10 characters including the SU prefix

A-3

UM 620144502
1 November 1985

15 On the Define New Application form, fill in the items as
follows:

DESCRIPTION:
HOST:
CLUSTER:
Press ENTER

Host and Cluster are variable and depend on the

application.

16 Press QUIT, to return to the IISS Function Screen

To run the generated application program, perform step 17

17 On the IISS Function Screen. fill in the item as follows

FUNCTION: SDUPDATEDB Press ENTER,

A4

rJ

qw qw qp wq q w

~*e % %

.,d.V. e P

